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Korteweg–de Vries solitons under additive stochastic perturbations

M. Scalerandi and A. Romano
INFM, Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

C. A. Condat*
Department of Physics, University of Puerto Rico, Mayagu¨ez, PR 00681, Puerto Rico
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The evolution of solitonic solutions of the Korteweg–de Vries equation subject to additive noise is inves-
tigated using numerical techniques. Various types of additive white Gaussian noise are considered. The aver-
aged solution amplitudes exhibit in all cases algebraic decay, verifying Wadati’s universality conjecture. If the
noise is time dependent, or position and time dependent, algebraic decay is obtained for intermediate times too.
These intermediate-time results agree well with the outcome of an experiment on ion-acoustic soliton propa-
gation in a noisy plasma. The distribution of soliton first passage times in a noisy medium is also discussed.
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PACS number~s!: 05.40.1j, 52.35.Mw
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I. INTRODUCTION

The remarkable stability of the solitonic solutions exh
ited by certain nonlinear differential equations was disc
ered by Zabusky and Kruskal in their classical numeri
study@1#. They showed that Korteweg–de Vries~KdV! soli-
tons preserve their identities through soliton-soliton inter
tions. The only signature left by these interactions is a ph
shift. Due to the increasing applicability of solitons to pra
tical problems, attention has recently been turned to the
bility of solitons subject to random perturbations. The exte
sive reviews by Bass and co-workers@2# and by Abdullaev
@3# describe many of the results obtained in this area. On
other hand, the possibility of observing Anderson localiz
tion effects on nonlinear excitations in disordered media
also led to interesting research on the interplay between n
linearity and disorder@4#.

The KdV equation is still a paradigm for soliton-bearin
nonlinear differential equations. As such, it has been the s
ject of many papers devoted to the analysis of the influe
of various types of random perturbations on its solutio
Abdullaev and co-workers have investigated the evolution
randomly perturbed initial solitonic states, assuming that
evolution is controlled by the nonrandom KdV equation@5#.
Other authors have studied the evolution of an initially d
terministic wave form due to a stochastically perturbed K
equation. By using the inverse scattering technique an
suitable moving reference frame, Wadati was able to ob
the exact one-soliton solution for additive time-depend
white Gaussian noise@6#. He showed that the average of th
single-soliton solution over many realizations should beh
as a Gaussian whose width increases ast3/2 at long times.
Thus the soliton performs a superdiffusive motion in ad
tion to its constant-speed displacement. Concomitantly,
predicted that the Gaussian amplitude should decreas
t23/2. Later, Wadati and Akutsu extended this work to obta
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exact multisolitonic solutions for additive time-depende
noise, and to investigate the influence of dissipation@7#.
They showed that dissipation leads to normal soliton dif
sion: the ensemble average is a Gaussian whose width
creases asymptotically only ast1/2. On the other hand, ther
is no ‘‘mass conservation’’ and the overall amplitude is e
ponentially damped. Their results were rederived by Herm
@8#, who also considered multiplicative noise, in the cas
corresponding to dissipation and velocity fluctuations. F
the averaged solitons, Herman obtained Gaussians w
widths grew with the same time dependence Wadati had
tained for the purely time-dependent additive noise. Ot
consequences of perturbing the solitons with multiplicat
noise, such as the generation of radiation, were analyze
Ref. @2#. More recently, Iizuka discussed the diffusion
solitons under the effect of multiplicative noise with lon
range correlations@9#, concluding that the soliton diffusion
must be anomalous if the correlations decay algebraic
with an exponent smaller than unity.

Wadati also conjectured that the algebraic dec
(;t2a) of the amplitude with time in the long-time regim
should have a universal character. In this connection,
problem of constructing integrable stochastic systems
analyzed in a recent book by Konotop and Va´zquez @10#.
These authors found that, by changing to a proper refere
frame, an additive noise can be transformed into a multi
cative noise plus a fluctuating background. In this way, it c
be shown that Wadati’s universality conjecture is verifie
with an exponenta that depends on the statistics and on t
form of the random term used. However, although the pr
lem is integrable or nearly integrable, it is not always po
sible to find the exponent explicitly, except by the use
approximate perturbation methods@11#. In this paper we de-
termine a numerically for nearly integrable KdV system
e.g., with various types of low-intensity noise. Moreover, w
extend the analysis to the intermediate-time region, which
our knowledge, has never been studied.

Since experimentalists often probe intermediate times
is useful to have explicit predictions that are not restricted
the asymptotic regime. Frequently, analytical results
4166 © 1998 The American Physical Society
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these intermediate times are either unattainable or too c
plex to be easily applied. Numerical solutions or simulatio
then provide the sole possible standards against which
perimental results can be compared. In particular, we
show that the hitherto unexplained results of the experim
of Chang and co-workers@12# on the propagation of ion
acoustic solitons in a nonquiescent plasma agree very
with the results obtained for position- and time-depend
noise in the intermediate time regime.

We have found no studies of the cases in which the K
equation is modified by additive noise that depends on p
tion or on both time and position. This problem is mo
realistic than that of the noise depending on time alone, b
is much harder to investigate using analytical techniques
this paper we perform a detailed numerical analysis of
effects of various types of additive noise on the evolution
the individual soliton solutions and of their averages.

Although first-passage problems for particles moving
disordered systems have received a lot of attention, there
as far as we know, no analyses of soliton first-passage ti
in a noisy medium. In this paper we propose an ansatz for
distribution of first passage times when the noise depend
time alone, and we use this ansatz in combination with
merical solutions to investigate the passage times for
interacting solitons.

We start Sec. II by revisiting Wadati’s results for thet-
dependent noise. We then present a simple derivation o
long-time result for the mean square displacement and ex
ine the first-passage problem. Some interesting feature
the unaveraged problem, which had previously received l
attention, are also discussed. In Sec. III we report the res
of the numerical simulations~some preliminary results, fo
shorter runs, were reported in Ref.@13#!. Our conclusions are
summarized in Sec. IV.

II. THE KdV EQUATION WITH ADDITIVE NOISE

The equation we consider in this paper is the KdV eq
tion subject to additive noise and dissipation@7,8#,

ut26uux1uxxx1gu5h~x,t !, ~1!

whereu(x,t) is a real field,h(x,t) an external random force
and the subscriptsx and t stand for the partial derivative
with respect to position and time, respectively. The damp
coefficient g is non-negative. We chooseh(x,t) to be a
white Gaussian noise, whose statistical averages sa
^h(x,t)&50 and

^h~x,t !h~x8,t8!&52«d~x2x8!d~ t2t8!, ~2!

where« characterizes the noise intensity.
The well-known soliton solutions of the determinist

KdV equation (g5h50) have the form

u~x,t !52k2 sech2@k~x2x0!24k3t#, ~3!

wherex0 gives the initial soliton location.
Let us start by considering the influence of noise in

absence of dissipative effects, i.e., wheng50. Even with
this simplification, the problem cannot be solved analytica
unlessh5h(t) alone. In this case, Wadati found that th
unaveraged one-soliton solution has the form@6#
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u~x,t !5W~ t !12k2 sech2

3Fk~x2x0!24k3t16kE
0

t

W~ t8!dt8G , ~4!

where

W~ t !5E
0

t

h~ t8!dt8. ~5!

Wadati also computed the statistical average^u(x,t)&,
showing that, at short times,t!t* 5(48k2«)21/3, it is still
approximately given by the one-soliton solution~3!. For t
@t* , the amplitude of̂ u(x,t)& decreases ast23/2, while its
width dx increases ast3/2. Wadati termed this phenomeno
‘‘soliton diffusion.’’

The long-time behavior can also be easily obtained
using a Langevin equation formalism. To see this, we n
that in each experimental realization, although the soli
shape is unperturbed, its maximumxM moves according to
the equation

xM~ t !5x014k2t26E
0

t

W~ t8!dt8. ~6!

This means that a stochastic term is added to the unif
displacement of the soliton in such a way that

ẍM~ t !526h~ t !, ~7!

with ^h(t)&50 and^h(t)h(t8)&52«d(t2t8).
To obtain an equation for the mean square displacem

it is convenient to add temporarily a small dissipative ter
Omitting the subscriptM, we write

ẍ~ t !1G ẋ~ t !526h~ t !, ~8!

whereG is the friction constant. This equation is easily int
grated, leading to

x~ t !2x~0!5
1

G F4k2~12e2Gt!26

3E
0

t

dth~t!~12e2G~ t2t!!G , ~9!

where 4k2 is the initial velocity. We can now compute th
mean square displacement (dx)25^@x(t)2x(0)#2&. At long
times we obtain the usual diffusive behavior, (dx)2;t ~as
found by Wadati and Akutsu@7#!. However, by letting the
friction coefficientG→0 first, we find

~dx!2516k4t2124«t3. ~10!

The first term on the right-hand side corresponds to
uniform displacement with the unperturbed soliton spe
while the second term gives the noise-induced superdiffus
behavior, which eventually prevails.

We now examine the problem of the soliton first passa
times~FPTs! in the case of the integrable model with a tim
dependent noise. Since the soliton is an extended object
must state precisely the meaning of the expression ‘‘soli
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passage time.’’ We will say that a soliton passes throug
given point when the maximum elongation of the distu
bance reaches that point, i.e., the passage timetP through
point L is defined in each experiment through the equat
xM(tP)5L. This criterion is not only intuitively appealing
but it is also very easy to implement in the simulations.

Suppose that it is known that the soliton passes thro
the origin at timet50. We would like to obtain information
about how long it takes the soliton to reach the pointx5L
for the first time. Although in the absence of noise the du
tion of this interval can be exactly calculated, once noise
introduced the soliton diffuses and all we can predict is
distribution of its FPTs. The probability density for the FP
in the case of normal diffusion of a point particle is discuss
by Feller @14#. If the particle starts at the pointz.0 at t
50, he obtains that the probability density for its FP
through the origin is given by

N~z,D,c;t !5
z

~4pDt3!1/2 e2~z1ct!2/4Dt, ~11!

whereD is the diffusion coefficient andc is the drift speed.
Equation ~10! suggests that the probability density for th
soliton FPT could be described by takingz5L,
ct524k2t, and Dt512«t3 in Eq. ~11!, provided that we
restrict its application to long times,t@t* , and to
h5h(t). Therefore, we propose

N1~L,«,k;t !5
LR

~48p«t5!1/2 e2~L24k2t !2/48«t3, ~12!

where R is a normalization constant. We have perform
long-time simulations that confirm the validity of this ansa
for the superdiffusive soliton case. We will present so
FPT distributions for the two-soliton problem in the ne
section.

Multisolitonic solutions subject to noise were studied
Wadati and Akutsu@7#. For any individual noise realization
the solitons preserve their shapes, while their locations ar
identically affected by the noise. A series of snapshots of
solitons would show that the relative distances between t
maxima grow linearly with time, as if there were no nois
This is important for signal propagation, since it means t
the solitons maintain their relative positions as they mo
through the noisy medium. Our numerical simulations sh
that this is indeed the case for any given soliton pair. It m
be remarked, however, that the knowledge that the lead
soliton crossed a given lattice point att50 does not suffice
to ascertain precisely the passage time of the second so
since the two-soliton system continues to perform a rand
walk at t.0, the exact first passage time of the trailing so
ton cannot be predicted.

No theoretical solutions are available for the caseh
5h(x). However, since the noise at a given location infl
ences in exactly the same way all points on the pass
wave, it is reasonable to expect a strong enhancement o
effects. Even small noise intensities will soon give rise
marked deformations in the soliton; it is therefore not s
prising that Herman mentions that ‘‘there are some div
gence problems with this type of noise@8#.’’ The numerical
solutions, on the other hand, are informative, whenever
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noise is chosen to be weak enough. Ifh5h(x,t) the effects
of the noise are not so devastating; because of the time
pendence, the influence of the noise at a given locationx on
different points on the wave tends to average out and
soliton solution can survive much higher noise intensities
we will show in the next section.

III. RESULTS AND DISCUSSION

In this section we present the discussion of simulatio
performed to investigate the effects of various types of ad
tive noise on the evolution of solitonic solutions. In the n
merical work we used the centered finite-difference discr
zation scheme proposed by Zabusky and Kruskal@1#. The
stability conditions for this scheme were analyzed in de
by Vliegenthart@15# and our particular implementation wa
tested by showing that the exact solitonic solutions preser
their form after very long runs. This simple scheme prov
to be both fast and accurate; we performed runs on a par
supercomputer~Connection Machine CM-5, Thinking Ma
chine Corp.! and on a sequential machine~SUN, Ultra 1!. In
the simulations we have lett→tt, wheret50.000 12 is the
time discretization step andt is the number of time steps. W
have taken the length of the space discretization step to
l50.1 and the initial single-soliton amplitude to beA(t
50)52k252.

In order to understand to what extent solitonic propert
are preserved when noise is introduced, we start by pres
ing ~Fig. 1! an overview of the influence of noise on thre
situations that characterize solitonic solutions: single-soli
propagation~left column!, soliton separation of an exact two
soliton initial condition~central column!, and soliton genera-
tion out of a nonsolitonic initial condition~right column!. In
the figure we show the effects of three types of addit
stochastic perturbations,h(t), h(x,t), and h(x) on indi-
vidual runs; we have superimposed snapshots taken at
different times, thet50 snapshot corresponding to the initi
condition. As a reference, we report the results for the de
ministic case (h50) in the first row. We present the resul
for h5h(t) in the second row, those forh5h(x,t) in the
third row, and those forh5h(x) in the fourth row. The
respective noise intensities are indicated in the vertical a
labels. All plots were made using a reference frame t
moves with the speed of the linear waves. From the fi
column we see that the noise does not destroy the soli
even though it modifies its propagation speed, as we
conclude from the shift in the peak position with respect
that corresponding to the unperturbed case. As expec
h(t) generates a vertical shift of the soliton, while in th
other cases stronger fluctuations are present and, for
times and strong noise, may even mask the soliton co
pletely. The two-soliton initial condition still gives rise t
two solitonlike waves, although in theh(x) case trailing
shelves appear behind each solitonlike solution. Note t
for the particular run represented here, the leading solito
well ahead of its ‘‘unperturbed’’ position, a consequence
the high efficacy of theh(x) noise. Forh(t) we also verified
that the distance between solitons grows linearly in tim
exactly as in the absence of noise. The last column sh
that the generation of multiple solitonlike solutions out of
steplike pulse is not affected by the noise. Although t
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FIG. 1. Overview of the effects of various types of additive noise on soliton propagation and generation. Abscissa labels give the
of spatial nodes. Two snapshots of single runs taken at different times are shown in each case. The first~reference! row corresponds to the
unperturbed problem and the following rows exhibit the effects of the kinds of noise specified in the vertical labels. The first column
single soliton propagation, the second column corresponds to the emergence of separate solitons out of a two-soliton initial cond
the third column shows multiple solitons being generated out of a rectangular shelf.
tio
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fol-
. At
process can be described analytically forh(t) @16# the simu-
lation confirms its robustness against the other perturba
types.

Figures 2–5 show the statistical effects of noise. In
n

ll

cases the averages were taken over 200 runs. No notice
differences emerge if we add more runs. Within the limits
numerical precision the evolution of each sample was
lowed exactly and the averages were taken at the end
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short times the averaged solution is not very different fr
the unperturbed single-soliton solution, Eq.~3!. At longer
times Gaussians provide very good fits for the averag
We have performed a detailed study of the widths a
amplitudes of these Gaussians. Here we report o
the results for the amplitudes, for which the fits a
more precise. Let us begin by looking at the purely tim
dependent noiseh5h(t), whose correlator satisfie
^h(t)h(t8)&52«d(t2t8). In Fig. 2 we consider three dif
ferent noise intensities, as indicated. Figure 2~a! is a log-log
plot that suggests the presence of three different regimes
short times, a Gaussian does not provide a good fit, but
t.8000 ~somewhat earlier in the case of«50.38! a Gauss-
ian starts fitting well and its amplitude seems to decrea
following a power law. At the longest times studied, t
amplitude of the Gaussian appears to decay, followin
stronger power law. In Figs. 2~b! and 2~c! we have zoomed
the results for the intermediate and long times, respectiv
using linear scales. These plots indicate that in the inter
diate region the amplitude decays approximately ast24/3,
while Wadati’s prediction of at23/2 decay is clearly repro-
duced at the longest times. These exponents do not see
depend on noise intensity, in agreement with Wadati’s u
versality hypothesis. We also observe that the amplitude
creases faster and that the onset of the asymptotic reg
occurs earlier for higher noise intensities. This is as it sho

FIG. 2. Amplitudes of the Gaussian distribution of solitons f
h(t) and the noise intensities indicated in the figure. Abscissa u
in Figs. 2–5 correspond to the number of time steps. In these
ures, the ordinate units are chosen so thatA(t50)52. ~a! is a
log-log plot extending up to 23 000 time steps.~b! and ~c! are
normal plots for the intermediate and long time regions, resp
tively. In these regions the average solution is well described b
Gaussian whose amplitude decays with two different power la
~which do not depend on noise intensity! indicated by the exponen
a.
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be expected from Wadati’s calculation; indeed, using hist*
@see below Eq.~5!# and the selected time scale, the chara
teristic time corresponds tot* t2153170 time steps for«
50.38 and to 4940 time steps for«50.1. In all cases, we
checked that the total ‘‘soliton mass,’’ i.e., the integral
u(x,t) over all x, is conserved.

In Fig. 3 we show the results obtained by using positio
and time-dependent noiseh(x,t). The noise intensities and
the plotting strategy are the same as in Fig. 2. No analyt

ts
g-

c-
a
s

FIG. 3. Amplitudes of the Gaussian distribution of solitons f
h(x,t) and the noise intensities indicated in the figure. The simu
tion extends up to 36 000 time steps and the results are present
in Fig. 2.

FIG. 4. Amplitudes of the Gaussian distribution of solitons f
h(x) and the noise intensities indicated in the figure. The interm
diate algebraic decay region has disappeared, but asymptoticall
get a power law decrease with an exponent close to24/3.
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predictions are available for this problem, but the figu
clearly indicate a time evolution that parallels that cor
sponding to theh(t) case: a slower power law decay~now
close tot22/3! at intermediate times and a faster power la
decay~close tot25/4! at long times. The intermediate-tim
result is particularly meaningful, since it is in excelle
agreement with the results obtained by Chang and
workers for the propagation of ion-acoustic solitons in pl
mas@12#. This can be seen by a direct comparison of th
Fig. 6~b! and our Fig. 3~b!: not only is the power law deca
the same, but also the absolute magnitudes are of the s
order. This suggests that~i! the experiment probed th
intermediate-time region and not the asymptotic region,~ii !
spatial fluctuations were relevant, and~iii ! damping was rela-
tively weak.

Next we studied the case of purely position-depend
noise. For the reasons indicated above, this type of noise
an accumulative effect that tends to degrade the soli
Therefore, we chose noise amplitudes much smaller t
those used before. As we see from Fig. 4, no clear power
decay is observed at intermediate times, but for long tim
the amplitude decreases approximately ast24/3. For times
longer than those reported, the average solution beco
meaningless, since the solitons are completely submerge
the noise.

We also investigated the stochastic damped KdV eq
tion. In Fig. 5 we report the results obtained using a tim
dependent noiseh5h(t). The theoretical predictions o
Refs. @7# and @8# indicate that the amplitude should dec
asymptotically ast2bexp(22

3«gt), with b51/2. Our numeri-
cal analysis shows that the amplitude indeed decays e
nentially but we get very good fits withb'4/3. It is possible
that the simulations do not reach into the truly asympto
regime, which is not observable. In fact, Herman
asymptotic form for the solution is probably valid only whe
the soliton amplitude is already so small that the correspo
ing numerical results are unreliable.

In the last part of this section we discuss some normali
histograms with soliton passage times through a fixed sp
point for the case of the two-soliton solution, withh5h(t)
andg50. The initial condition is the same as in the seco
column of Fig. 1. The FPT distributions for both solitons a
presented in Fig. 6. The histograms were built using 10
runs. Since in some of the realizations the delay of

FIG. 5. Amplitudes of the Gaussian distribution of solitons w
damping forh(t) and the noise intensities indicated on the figu
The curves were fit with the functiont2b exp(2 2

3«gt). The corre-
sponding values ofb andg are also indicated on the figure.
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slower solitons was very long, we have omitted a portion
the distribution tail in Figs. 6~b! and 6~c!.

Due to the soliton-soliton interaction, we cannot use E
~12! directly to describe the numerical results. However,

.

FIG. 6. Histograms for the passage times of two solito
through the nodei 5675 after starting fromi 5300 ~the lattice has a
total of 1200 nodes!. The solitons start as an exact two-solito
solution, which begins to separate att50. Here h5h(t) and «
50.1.
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can slightly generalize this equation by adding the fitti
parametersa ~the width of the distribution of arrival times!
andP ~the phase shift generated by the interaction in a no
medium!. For each soliton we try

N2~L,a,P,k;t !5
LR

~48pat5!1/2 e2~L24k2t2P!2/48at3,

~13!

an equation that should hold after the solitons have b
resolved. Of course, botha andP will depend onL ~in the
case of a single soliton, we would havea5«!. For simplic-
ity, and since the distribution tail was cut off, we obtain
the normalization constantR directly from the fit. As it can
be seen from Figs. 6~a! and 6~b!, Eq.~13! describes very well
the FPT distributions for both the leading and the traili
solitons, for whichk52 andk51, respectively. Note that in
this figure we have used the ‘‘real’’ time in the abscissa;
distance from the origin to the recording point isL5(675
2300)l537.5. We found thata50.0799 andP521.424
were the best-fit parameters for the fast-soliton distributi
while a50.1135 andP525.541 were the best ones for th
slow soliton. It appears that the interplay of noise a
soliton-soliton interaction tends to concentrate the arri
times of the leading soliton and to separate the arrival tim
of the trailing one. This is not surprising, considering tha
takes the trailing soliton a longer time to reach the tar
point and the integrated effects of the noise should be c
sequently more intense.

Trials performed with«50 reveal thatP.0 for the faster
soliton andP,0 for the slower soliton~which is in agree-
ment with theoretical results@17#!. The negative sign of the
parameterP for both solitons when«.0 indicates that the
noise introduces an additional negative phase shift.

Although the distance between the solitons is comple
deterministic for each run, we cannot predict the time de
~i.e., the separation between transit times!. The reason is tha
both solitons continue their coupled random walks in
time intervening between their respective passages thro
the fixed point. A normalized histogram for the time delay
presented in Fig. 6~c!.

IV. CONCLUSIONS

We have performed a detailed numerical study of
propagation of solitonic solutions of the Korteweg–de Vr
equation in the presence of various types of noise. Our
-
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sults establish the validity of Wadati’s ‘‘universality’’ con
jecture about the asymptotic behavior of the averages for
KdV problem; we also obtain precise values for the expon
characterizing the decay. These exponents depend on th
ture of the noise but not on its intensity. We note that
recently confirmed Wadati’s conjecture for the case of
solutions of Boussinesq’s equation propagating under the
fluence of additive time-dependent noise@18#; the exponent
obtained in Ref.@18# agrees with the corresponding expone
(a51.5) for the KdV equation. We have thus confirme
Wadati’s conjecture on a restricted scale; more work sho
be done to check its validity for the solutions of oth
soliton-bearing equations. When dissipation is included,
confirm the prediction of an exponential decay modified b
power law factor, but we obtain a power that is stronger th
that predicted by the available theory. We believe that
reason for this is that in the theoretically predict
asymptotic regime the attenuation has already cause
strong reduction of the average, which becomes comple
unobservable due to the noise.

Numerical solutions have the advantage of leading to p
dictions for all times. We have shown that whenh5h(t) or
h5h(x,t), there is an intermediate time range for whic
algebraic decay is to be expected, with a smaller expon
than in the asymptotic regime. The agreement between
intermediate-time solution and the results of the experim
of Changet al. suggests that these were not completely u
derstood because the experiment had not probed the
asymptotic region, the only one for which easy-to-interp
analytical predictions were then available. Finally, we exa
ined some statistical properties of the soliton first pass
times in a noisy medium, a subject that, as far as we kn
had never been investigated before. An ansatz generali
Feller’s formula for the first passage time distribution w
proposed and verified numerically. A more detailed analy
of this problem is in progress.
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